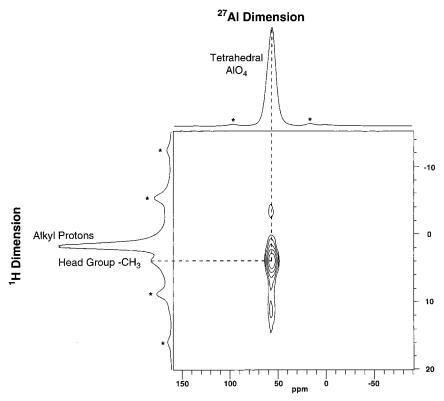

Additions and Corrections

1999, Volume 11

M. T. Janicke, C. C. Landry, S. C. Christiansen, S. Birtalan, G. D. Stucky, and B. F. Chmelka: Low Silica MCM-41 Composites and Mesoporous Solids.


In Table 1 (*Chem. Mater.* **1999**, 11, 1342, this issue), the uncertainty for the Si/Al molar ratio is ± 0.3 .

The incorrect version of Figure 2 and its caption were published. The correct figure and its caption are as follows:



Figure 2. Single-pulse 27 Al and 29 Si MAS NMR spectra for as-synthesized, low silica MCM-41a—d samples containing different concentrations of aluminum (see Table 1). (a) Only tetrahedrally coordinated aluminum species (55 ppm) are observed in the 27 Al MAS spectra of these materials. The additional weak peaks in the spectra correspond to spinning sidebands (*) which appear symmetrically about the isotropic peak at integer multiples of the rotor frequency. 27 Al MAS data were collected with short 1- μ s pulses (corresponding to a π /6 tip angle), 500-ms repetition delays, and spinning speeds ranging from 3.5 to 5 kHz under conditions of proton decoupling. (b) 29 Si MAS spectra reflect a distribution of 29 Si sites. 29 Si MAS data were collected with a 8.50- μ s π /2 pulse and a recycle delay of 180 s, under conditions of magic-angle spinning at 5 kHz and proton decoupling.

The incorrect versions of Figures 3 and 5 were published. The correct figures are as shown:

Figure 3. Two-dimensional 27 Al{ 1 H} HETCOR NMR spectrum for as-synthesized, low silica MCM-41d (Si/Al = 1.3). Separate 27 Al MAS and 1 H MAS spectra accompany the HETCOR contour plot along the corresponding axes (* denotes spinning sidebands). The 2D spectrum was acquired at room-temperature under conditions of magic-angle spinning at 3.5 kHz. A 8.0- μ s 90° pulse, followed by a 0.75-ms contact time, was used for cross-polarization. The 90° 27 Al pulse length was assumed to be one-third of the 90° pulse length found for 27 Al in solution. $^{28.29}$ The HETCOR intensity correlations spectrum show that the tetrahedrally coordinated aluminum species interact strongly with the protons of the surfactant head group.

Figure 5. Two-dimensional 27 Al{ 1 H} HETCOR spectrum for the calcined, NH₄⁺-exchanged, and dehydrated aluminosilicate MCM-41d sample. Separate 27 Al MAS and 1 H MAS spectra accompany the HETCOR contour plot along the corresponding axes. Correlated intensity in the 2D spectrum between signals from the NH₄⁺ protons and tetrahedrally coordinated 27 Al species confirm retention of aluminum atoms in the framework following calcination. The spectra were acquired using the same experimental conditions reported in Figure 3.

CM990981I

10.1021/cm990981i Published on Web 05/17/1999